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SUMMARY

The present paper gires a new ireatment, due essen-
tially to von Karman, of the problem of the thin airfoil.
The standard formulz for the angle of zero lift and zero
momeni are first dereloped and the analysis is then ex-
tended to gire the effect of disturbing or interference reloc-
iiies, corresponding to an arbifrary potential flow, which
are superimposed on a normal recitlinear flow orer the
airfoil. An approrimate method is presented for obtain-
ing the relocities induced by a £-dimensional airfoil
at a point some distance away. In cerfain cases this
method has considerable adraniage over the simple
“lifting line” procedure usually adopted. The inter-
ference effects for a 2-dimensional biplane are consid-

ered in the light of the prerious analysis. The results of !

the earlier sections are then applied to the general problem
of the interference effecis for a 3-dimensional biplane,
and formule and charis are giren which permif the

biplane without sweepback or dihedral io be calculated.
In the final section the conclusions drawn from the ap-
plication of the theory to a considerable number of special
cases are discussed, and curres are giren illusirating cer-
tain of these conclusions and serving as examples to in-
dicate the nature of the agreement beiween the theory and
experiment.
L INTRODUCTION

In the autumn of 1928 Dr. Theodor von Karman,
in a series of lectures at the California Institute of
Technology, presented the elements of a new approxi-
mate theory of thin airfoils, and also gave certain ex-
tensions and applications of the theory to the 2-di-
mensional biplane problem. The present author was
interested in the question of the interference effects for
a 3-dimensional biplane and attempted the extension
of the theory to this problem. Since the airfoil theory
had never been published, Doctor von Karmsn sug-
gested to the author that the latter work it over and
prepare it for publication along with the biplane analy-
sis. The following paper submitted to the National
Advisory Committee for Aeronautics for its considera-
tion relative to publication as & technical report, is the
result of the effort to do this. The material in sections

IT to IV is based largely on Karman’s ideas, although
the author must accept the responsibility for the de-
tails of the analysis, since they frequently differ widely

from those given by Karman. In meny cases, also,
the original theory has been considerably amplified

and extended. The 3-dimensional biplane theory itself
has been developed entirely independently.

II. THE THIN AIRFOIL IN AN UNDISTURBED FLOW

The present development of the theory of thin air-
foils, in common with many others, is based on the
method of conformal transformation in which two
complex planes are connected by a relation of the
form z=f (). Here z=z+1y is the complex variable
for one of the planes, { ={+1y is the complex variasble
for the other plane, and f is an analytic function of {.
Such a relstion ‘transforms any curve, and in partic-

(o s @ ! H . ular any streamline, in the { plane into & corresponding
characteristics of the indiridual wings of an arbitrary |

curve or streamline in the z plane. If the streamlines
in the first plane correspond to an irrotational motion,
the transformed flow in the other plane will have the
same property. If the velocity of such & flow is known
at any point in the { plane the velocity of the trans-
formed flow at the corresponding point in the z plan
isgiven by . -
e-ig=BTE
& |
where Qupecrips IS the appropriate component of velocity.
Yery often only the absolute magnitudes of the cor-

‘responding velocities need be considered, so that the

following simplified form of the above relation may be
used:
1th

2

!lz'=§_r1

where ¢, g; are the absolute values of the resultant
velocities and the bars signify absolute value. For a
very. lucid account of conformal transformation as
applied to aerodynamics the reader is referred to
Chapter VI of Reference 1, in which these formulz
are deduced.
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In the present work we shall use only the very simple
transformation— ; .

(1 ¢ '

so that the transformation relation for the velocities
has the form— o .

(2)

z={+

1

G

We start with an arbitrary flow about a unit circle’

with center at the origin of the { plane. Then (1) gives
the corresponding flow about what may be considered
as a straight-line airfoil in the 2z plane, extending
between z=+2. The resultant force and moment
acting on this straight-line airfoil can be easily deter-
mined for any simple flow. The problem is now to
deform this straight line into a more or less arbitrary
airfoil shape and then determine the force and moment
acting on this final airfoil. If y=y(z) is the equation
of the airfoil, then by taking ¥ as a double-valued
function we can construct an airfoil of arbitrary camber
and thickness. However Jefireys has shown (Refer-
ence 2) that for normal airfoils the effect of thickness
is small, so that, in view of the difficulties introduced
into the present method by the consideration of thick-
ness, we shall confine ourselves to the discussion of
airfoils of zero thickness. These line airfoils which
we shall discuss may be considered as the mean camber
lines of actual airfoils of finite thickness. We impose
the restriction that the ordinates of the airfoils shall
everywhere be small with respect to their chords, and
for the purpose of actually carrying out the transfor-
mations we also make the additional restriction that
the leading and trailing edges shall coineide with the
points z=—2, +2, respectively. Then y will be a
single valued function of z and the airfoil will be a
curve between z= %2, which is slightly distorted from
the original straight line.

In accordance with (1) there will be & corresponding
curve in the { plane which will differ slightly from the
original unit circle. For simplicity we shall refer to
this curve as the pseudocircle. If r, 6 represent polar
coordinates in the ¢ plane and if on the pseudo circle

we write r=1+e¢, where ¢ is a variable whose value is :

everywhere small compared with 1, then the equation = &t the airfoil as ¢,. Hence, teking into account the

of the pseudocircle may be written in complex form as
3) E=(1+e)e?
The equation of the airfoil is obtained from this by

applying (1). Since ¢ is a small quantity we neglect :

its second and higher powers and in this way obtain
very simply the equation of the airfoil in complex
form:
z2=2 (cos 6+1e sin 6)
or in the more convenient parametric form:
x=2cos §
@) y¥=2¢sin ¢
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It will later be necessary to find the velocity along
the surface of the airfoil, being given that along the
pseudocircle. Since both velocities will be tangential
to the corresponding surfaces we shall require only
the relation between the absolute magnitudes of the
velocities at corresponding points of the two curves,
which is readily obtained from (2) and (3). Neglecting
powers of « we get as a first approximation:

&

®) =7 sin

where g, and ¢; are velocities at correéponding points
P, and P; (fig. 1. o

§ plane 47

z plane

FIGURE 1

If ¢, q» represent the indicated components of
velocity in the { plane and g¢;, ¢; the components at

the corresponding point in the z plane, then within

the limits of accuracy of our approximation we may

write the velocity at the pseudocircle as go and that

conventions as to directions indicated in Figure 1,
equatiqn (5) becomes: !

' __Tq
®) =5 sn b

1 Both aquations (5) and (8) should properly be maltiplied by factors of the form
[1-4+0¢€)] whers 0 (¢} denotes a quantity which Is of the order of magnitude of « and
which vanishes with . Hence these two equations are exact at the unit circle and
are In error by quantities of the order «at the psoudocircls, When the relation (8)

¢ Is used, however, as for Instance In obtalning (18) from the preceding equation, It
| 13 applied efther at the unit cirale or, if at the pseudocircle, it Is nsed to transforn &

small veloolty increment which {s already of the order e Hence the error introduced
into any of the expressions in which the approximate relations (8) and (8) have been
employed i3 of the order ¢ in agreement with the degree of approximation throughout
the theory.

i
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The present method of determining airfoil char-
acteristics is essentially the following: The conditions
for en arbitrarily assumed flow about the straight
line airfoil are taken as known, and the changes
produced when the straight line is deformed into a
curved airfoil are then calculated. The acfual anelysis,
however, is carried ouf in the { plane and the final
results transferred back to the z plane. Let subscripts
zero refer to the original conditions of a flow about
the straight line airfoil or unit circle, i. e. g, @,
are the velocities in the { plane for the flow in which
the unit circle is & streamline. Then in order to
distort the flow so that the pseudocircle may be &
streamline we must superimpose on the original flow
additional velocities ¢/, ¢¢'. The unique feature in
von Karman’s method is that it permits a direct
determination of these additional velocities based on
very simple physical reasoning. The following dis-
cussion, while not identical with that given by von
Karman, is the same in principle. Consider the con-
ditions at a small element (fig. 2) in order that the

FIGCRE 2

pseudocircle may be a streamline, i. e. no flow across
it. Since € is small we may, to a first approximation,
take ¢ as constant along any radius between the
circle and the pseudocircle. Then

g-d6 =d(eq)
d
o= d—a(fql)
According to our notation
@r=gr,t q’
a=q,+q’

but at the unit cirele g;;=0 and hence

(7) o' =;%, (egq,)

where, within the limits of our accuracy, ¢, may be !
taken either at the cirele or the pseudocircle, and |
similarly for g¢s. ¢’ has been omitted from the
parenthesis of (7), since its inclusion introduces only :
terms of order € into ¢,’.

639

In order to find ¢ we employ a known relation in
potential theory. If ¢ is a potential function, i. e. a
scalar function whose gradient gives the velocity for

gn irrotational motion, then the general expression for -

¢ in polar coordinates, subject to the restriction ¢=0
atr=c is

- Ay sin n8+ B, cos nf
] ar®

K=l

and the cbrrespondil_:g vglocity components are given by

dé N\ \Aa sin n8+B, cos nf
= P2y

Qr—a

n=1

_10¢ _ N A cos n8— B, sin nd
Y ratt

a=1

By s little calculation it can be verified that
I = A, sin né+ B, cos nf 0—r d-
2x.)o przi cot ) 6

-
_ 2 }A, cos nr—B,sinnr T
x=]

o

and hence _
(8) (r,7)= ——l—fh (8, ) cot 6z de
R 2

where 7 is an arbitrary value of the variable 8. This
is & perfectly general result holding whenever g, and
gs are velocities derived from a potential function
(i. e. for an nrotational flow) which vanishes at in-
finity.? Taking ¢ as the potential function for our
additional or superimposed flow we get at the psuedo-
circle as’'a special case of (8)

1 (* 0—
@ ()= —2—,fa g (6) cot TT de
which gives, in view of (7},

O @O e et

Starting with an assumed velocity around the unit
circle equation (9) gives the velocity ge=gqi,+ q¢" at the
pseudocircle from which the velocity at the airfoil
may be determined from (6). In general g will not
be zero at §=0 which implies that the velocity g,
at the trailing edge of the airfoil will be infinite. Ve
now impose Kutta’s condition that at the trailing
edge the flow must be smooth; i. e., the velocity at this
point must be finite. Then, since §=0 corresponds

1 It should be remarked that for all integrals of the form (8) the principal value
of the Integral Is to be taken. The reader Interssted In a mathematically more rigoz-
ous derivation of equation (8 Is referred to page 9 of H. Villat’s book *! La Resistance
de Fluids,” Scientla Reries, Ganthier-Villars, Paris (1020).
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to the trailing edge, and in view of (6), Kutta’s
condltlon takes the form

qe (0)=0

In order to satisfly this condition we must superim-
pose upon the existing flow a circulation flow char-
acterized by a circulation T and by velocities at the
girfoil or pseudocircle gr. Then Kutta’s condition
becomes

(10 ¢ (0)=gsy (0) + o (0) + g (0)=0"

This equation permits the determination of T in the
following manner. Since y is an even function of 6
and hence ¢ is an odd function (cf. equation 4), there-
fore the perimeter of the pseudocircle is to a first
approximation the same as that of the unit circle, so
that the tangential velocity due to a circulation T
about the pseudocircle is, within our accuracy, the
same a8 that which would exist at the unit circle due to
g circulation I' about it. Hence at the pseudocircle

T
Qe (9)=const¢auu;=a.—ﬁ o

where T' is taken as positive when the tangential flow
is clockwise about the pseudocircle or airfoil (cf. fig. 1).
Then (10) gives for the determination of T\

T'=2x{gs, (0) +q’ (0}]

Introducing expression (9) for gé

11 =2 o—fhﬂ : 29 4o
( ) - quo( ) 0 de (Eqﬂo) co 2

and the total tangential velocity at any point, 6, of
the pseudocirele is
g (8)

(12) =010 @)+ a1’ (6) — 5 or

(12)  go (6)=s, (6)— g, (0) —51;";[}2’ zij; (egeg) cot Tz;e dr

1 (*rd
‘i"ﬂj;' a;_' (éggo) cot % dr

(Notice that the varisble of integration has been
changed from ¢ to 7.} These are the fundamental
equations of the present airfoil theory.

We shall first apply these equations to the deter-
mination of the lift and moment coefficients of an airfoil
at an angle of attack « in a uniform, rectilinear flow.
The velocity at infinity in the z plane is taken as hav-
ing the constant valie U inclined at an angle a to the
positive z axis. Then since the transformation (1)
leaves the region at infinity unaltered we shall have
these same conditions in the { plane. The velocity

1 improper this step requires a little investigation.

about a circle in such a flow is well known. In our

notation we have

[Ql°= —2Usin (0—¢)

(13) @ (0)=2Usin «

In finding the lift we make use of the fortunate fact
that a circulation is invariant to & conformal trans-
formation. In other words, if we are given the cir-
culation about any closed curve in a plane, and are
also given a second plane connected with the first by
& conformal transformation, then the circulation about
the corresponding curve in the second plane is identical
with that about the original curve in the first plane.
Hence in our case the lift of the airfoil is given by the
familiar Kutta-Joukowsky relation

L=pUT

where p is the density of the fluid and I" is the circulation
about the pseudocircle as given by (11).
Introducing expressions (13} into (11) we get

T=4xUsin a+3U |~ e sin (0—e)] cot & db
=4zU gin o . de[esm a)] co 9

In simplifying this expression it is convenient to per-

form a partial integration, but since the integral is

Nesr

6=0 we have along the airfoil or pseudocircle from (4)
. y _ esinf e €

2—2 1—cosd . 8‘220

tan §

But néar_9=0 2—_3—:—:5=K (say) is the slope of the tan-

gent to the airfoil at the trailing edge so that for any
normal airfoil K is at most of order of magnitude 1.
Hence

for 6—0 e=%{ 8, where [Ki<1

Using this fact the ordinary methods of elementary
calculus show that the partial integration may be

performed and that the integrated term vanishes,

giving-

_ . ¢ sin (0—a)
I‘—4wUsma+2Uf =08 8 dé

For all practical purposes the angle of attack is
small, so that in the future we shall throughout call
a a small quantity, writing

o sin a=a, cos a=1
Hence .

=4rUa+2Uf T a(sm f—o cos 0)d8,
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or introducing the airfoil ordinate by means of (4)

-3
y cot @
¢ ¢ I—cos Bde

Since y is an even function of # the second integrand is
odd and the first is even. Hence the second integral
vanishes and we have:

I'= 41'[7a+2Uf ]._C?S—G

Defining the lift coefficient in the usual way, employ-
ing however the German notation in which ¢=chord,

T=oUT=0,20%

In our case {=4 so that

and

(14) Cp=2rat f

= cos 8 (chord =4)

For purposes of theoretical analysis this is a very
convenient form of the expression for (', but for finding
the characteristics of an actual airfoil the following
alternative forms are more suitable. They are obtained
by replacing 6 by z in accordance with (4)

1 =
. Co=2ra+l f - )\/ (5) (chord =4)
= 2ea+2 L (1_—:% (chord =2)

Note that in (14), (15) the airfoil chord lies aelong the

Before discussing these equations it will be advan-
tageous to deduce the corresponding expressions for
the moment coefficient. Throughout the present paper
the moment will be measured about the center of the
airfoil—i. e., the origin in the z plane—and will be
considered as positive when it tends to raise the lead-
ing edge of the airfoil, i. e., stalling moments are posi-
tive. There is, un.fortunately, no simple analogue of
the Kutta-Joukowsky equation for moments, so that
pressures must actually be integrated over the airfoil,
which makes this calculation somewhat more tedious
than the correspondmg one for lift. R

The general expression for pitching moment may
be written '

(18) M=Spz dx

where p is the pressure at any point in the fluid and the
path of integration is taken in & clockwise direction

about the surface of the airfoil. Introducing the wari-
able 6 through the substitution used before, z=2 cos 8,

(17) =4 .L “p sin 8 cos 0 48

At the airfoil Bernoulli’s equation gives

p=H-5¢?

where H is the total pressuys head and is constant
throughout the fluid. Substituting this in (17) the
term containing H vanishes and replacing q, by ¢.
according to (6) we have

=—§ g2 cot&d&

It is convenient to consider the moment in two parts:

M;=moment acting on the straight line airfoil at
angle of attack a; M;=additional moment due to the

deformation of the straight line into & curved airfoil.
Considering first 3;, e=0 for the straight line airfoil
and hence from (12) and (13) ’

= —20Ulsin 6+ a1l —cos 6)]
S AM=—2 pU’f:'[sin’ 8+ e?(1—cos 9)?
+2 asin 8(1 —cos )] cot 8 dé

o )
=+4 pU‘af cosf.de
0

and finally
M]_ = 4‘l'llp U

As the straight line is deformed into the curved
airfoil the velocities ¢, are changed by small amounts
corresponding to the changes in ¢ as the circle is
deformed into the pseudocircle. We must calculats
the additional moment 3f, due to these changes.
Let p* ¢:*, q* represent pressure and velocities for
the straight line airfoil (y=¢=0), and let Ap,- Ag;,
Agq represent the additional pressure and velocities
introduced by the airfoil camber. Then from
Bernoulli’s equation

p* 5@ =p* +Ap+ 50 +Ag)
and neglecting the small term containing (Ag:)?
Ap=—pg*Ag:
Replacing p in (17) by Ap we have
A= —4pf2rq,*Ag, sin 8 cos 6 d6
or '

2x
(18) AM.= —pj; ge*Ags cot § da
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¢s* is given by the first two terms of (12) and Agy by
the last two. Hence using (13)

My=450* | [sin 0+ e (1~ cos 6 tafifz'ile(sin
1=4p Jo [sin 6+ e(l—~cos 6)] co ), dr T

T— 0

—a cos 7)] cot —— 5

1 (=d, ..
—fn-ﬁ E‘;[e(sm 7= a cos )] X
cot % dr}dﬂ.

The second integral inside the curly brackets is a |.

constant with respect to 6 so that upon integration
with respect to 6 the term contammg it vanishes.
Therefore

207
x

ﬂfg—_—
~ & cos 7)] cot T df}d0=2—:_£2ﬁha%-_[e (sin 7
2 T—4@
— a ¢oS -r)]{j; cos @ cot 5 dG]d-r
+?R-U—, a fﬂré{— ¢ (sin 7—a cos r)]U\h(l—cos ) X
T 0 []
cot Gcot.‘r—;g dﬂ]dr

The second integral in the last expression for M, is
apparently of order ae but a somewhat lengthy calcu-
lation shows it to be actually of order o, so that to
our degree of approximation it can certainly be neg-
lected. In order to perform the integration with
respect to 6 in the remaining part of Mz we write
r—0=u4. Then
2% ’ r—8 r—2c
J; cos 8 cot 5 d0=f {cos T cos u

14+cos u du

+sin 7 sin %) -
gin 4

. .
= oS 'rJ; cot u (1+cos u) du

2x
+sin -rj; (1+cos #) du=2rsin 7
so that
2' . d .
M’,=4pU’J; sin 7 o [e (sin 7—a cos 7)] dr

Integrating by parts
Ix .
M= —4pU’J; € (sin —a cos 7) cos 7 dr
and since € is an odd function of =

M= —8pU’j:re sin 7 cos 7 dr

or changing the variable of integration to § and replac-
ing e by y from (4)

ng=—4pU’j;rycosﬂ do

f:'[cos 8+a (1—cos 8) cot Ol{j:r% [e (sin 7 -

Combining the results for A, and 3£, we have, for the

total moment acting on a curved airfoil at an angle of
attack e,

M=M,+ M, = dzaplP—2p TP f ycosodo
Deﬁmng Cu by
M=Cuf Ut

where in our case =4

(19} : Cx=%a— %J;ry cos 6 d¢ (thord =4)

In terms of the airfoil coordinates this gives

CueT ol 3 yzdz
¥—92% '8 \/1—__;5—)_3 {chord =4)
(20) -2 2
o T + yrdx
0u=§a f_l Jiza {chord =2)

Néte that in (19) and (20) the airfoil chord les
along the z axis.

Expressions (15) and (20) are essentially the same o
Q Thoy
. illustrate very clearly that the lift cooflicient of a thin

as those first given by Munk (Reference 3).

airfoil may be split up into two parts, the first due to

angle of attack with a constant center of pressure

25 per cent of the chord back from the leading edge,
and the socond due to camber whose magnitude and
center of pressure are independent of the angle of
attack but depend upon the camber.

In spite of the large amount of discussion which
these equations have roceived at the hands of various

“authors there are one or two points which should be

mentioned explicitly here. The first relates to the
agreoment which has been observed between these
expressions and experiment. The so-called angles
of zero lift and zero moment as predicted by (15} and
(20) are found to be verified quite satisfactorily, but
the theoretical slope of lift and moment coeflicient
curves is not realized in practice, the discropancies
being roughly the same in both cases. Ilence a very
simple and satisfactory method of bringing both
expressions into agreement with experiment is to
multiply both by a constant factor which has been
referred to as-the ‘“‘efficiency factor” and which we
shall denote by % - n varies somewhat from wing
section to wing section, but if experimental data on
a particular section are lacking n=0. 875 may safcly
be taken as & good average value.

The second point is largely one of notation. In the
present method of derivation of the expressions for
C: and Oy it was necessary to take the airfoil chord

as lying along the z axis and extending between the .

points z=—2 and z=+2. In the later analysis
of section III it will be convenient to take the z axis
in the direction of the velocity U in which case we

N
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ghall again require the airfoil trailing edge to lis upon
the z axis at the point z=+2, but shall vary the
angle of attack by rotating the airfoil chord about this
point, so that the leading edge will no longer be
required to He upon the x axis. In this case y is
measured as before from the z axis which imples that
for a given sirfoil y=y(z) will vary with the angle
of attack. The formul= deduced in this section remain
valid even under this changed notation, although in
applying them it must be remembered that a is to be
placed equal to zerc. We shall verify this fact for
equations (14) and (19).

Consider the same airfoil at the same angle of attack
from the two points of view. Let primed quantities
denote conditions relative to the new system and
unprimed quantities conditions relative to the system
previously employed (cf. fig. 3).

Ay

\[N . v :

general is then the angle between the velocity U
and the positive z axis. The mathematical reason for
the removal of the restriction on the leading edge
position Les in the fact that for the convergence of the
integrals of this section it is only necessary that y=0
for =0, and it is not necessary that y=0 for f=nx.

- The methods of this section may be applied to the
calculation of the lift or moment of any portion of the
girfoil, for exdmple the lift and hinge moment of an
airfoil flap, by choosi.ug the appropriate origin and
limits of integration in (16) and in the corresponding
equation for lift. In cerrying out this procedure it
appears that very unpleasant integrals are sometimes

which avoids the use of integrals is possible which will

be briefly outlined here. If egy, be expressed as a
| Fourier series then from (7) ¢, may also be so expressed.
g’ may then be found in the same form

Y by employing the series expressions pre-

ceding (8), and finally ¢ may be ob-
tained from an expression anslogous to
(12) in & form contsining no integrals.

)
e R

Figuere 3

Then using the old system (; and Cx are given by !
(14) and (19). In the new system we have pro-
visionally (since we write 2=2cos # in both cases)— |

. yde
% _f I—cosf

Ol =—3

y’ cos 644

Since, however, « is small we may write with sufficient
accuracy

Y=02—2)aty=2(1—cos 8) aty

so that
PP yd§
C. —-2aj; do+ [T
Cu’ =aJ;’cos’ 6ds —% j;ry cos 6d4
or 1
‘e *_ydf
O/ =2rat ol —cosé

which are identical with expressions (14) and (19) for

0. and Cy. Hence the only restriction on the equa-

tions of this section is that the trailing edge must lie

on the z axis at =42 (z=+1 for chord=2), and

that y must be small compared with the chord. «in
41630—31——42

T
|

Having gy the determination of lift and
moment follows the procedure already
discussed. The forces and moments act-
ing on an airfoil with flap have been ob-

tained in this manner with comparatively little diffi-
! culty, and the earlier results of Glauert (Reference 4)
entirely verified.

I THE EFFECT OF SMALL SUPERIMPOSED
YELOCITIES

upon the flow of the previous section, the additional
flow being such as would give velocities 8¢, and 3¢,
at the airfoil if the latter were not present. Due to
the principle of superposition, which states that the
resultant of several irrotational flows is given by the
vector addition of the velocities of the individual
flows, the effect of this additional flow upon the
airfoil characteristics can be determined by merely
superimposing the additional velocities upon those
which were found in Section II. It must be remem-
bered, however, that Kutta’s condition is to be
satisfied after the superposition.

The analysis follows closely that of the last section,

| but a few important changes must be noted. Since

the notation tends to become cumbersome we shall not
carry through the calculation for a general gu, as
was done before, but shall immediately specify the
particular gs, and g¢,, which are of practical interest.
We adopt the second system of nofation as deseribed
at the end of Section II, taking the velocity U as
parallel to the X axis. Since we have already seen

that the radial velocity at the unit circle is zero for

encountered. In such a case an alternative method .

Consider & second irrotational flow superimposed -
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the original flow without superimposed velocities, and
from (13) gs,= —3U sin 6, we have

an= —2Usin 5+5Qg

Qro=69_'r
where from {(5) and (6)
(21) 3qe=—5g; - 2 sin §

8q,= +3g,- 2 sin 0

From the two sets of equations preceding (7), the
analogue of (7) becomes

¢! =~ le (U+3g) 2 sim ]~3g,

or introducing ¥ from (4)

/== Uglv(1+%) o

In order to carry out the subsequent analysis it
will be necessary to make certain simplifying assump-
tions as to the nature of the superimposed velocities.
The first of these assumptions, which will be intro-
duced at this point, is that in the cases considered in
this paper the variations in ég, over the airfoil chord
are small and relatively unimportant in their effects.
This assumption permits the variable 8¢. to be re-
placed by a constant which will be taken to be the
value of 8¢, at the center of the airfoil, and will be
written in the future simply as 8g,. Then

U(1+5q‘ &y,

so that, corresponding to (9),
“2x —_
q.’(6)=g(1+§i’>J d—ycot%—adr

2[5

In this equation and until (257) %f is written as %f ("

6 dr.

to indicate that % 1s to be considered as a function of

rnot 8. From (25') on the argument (r) is omitied
since 8 and 7 do not occur simultaneously and no
ambiguity is possible. _

Introducing Kutta’s condition to determine the cir-

culation, :
I'=2x [gq, (0) + 0" (O)]

(0)+—<1+5q’)f Feotzdr

“may be considered as a correction factor.

89z, 8¢, are assumed to be everywhere finite, therefore

from_(21) 8qs (0)=4q, (0)=0. Xence the ﬁnal equa-

tion for the total tangential velocity at the pseudo-
circle is, from (127),

—49

©2) q,(e)={—2Usine+§U; o "Weot T dr
—g- ggcot dr]
+[59‘+%£2 Foot 5
%fg ] g‘:{cot~dr
+2 (TR et THlar
—-%- ) 6q’()cot dr}

where the terms in the first bracket are those for the

original undisturbed flow, and those in the second
bracket are the additionel terms introduced by the
superimposed flow: 8¢, bg,.

In the present case it is convenient to integrate
for bath the moment and the lift.
has already been given for the moment; the cor-
responding one for the lift is

L=—§pdx

=—2 L " sin 6d6

2r
M=4j; p sin § cos 6dé

so that

(23)

We follow the previous method of splitting up the
moment (or lift) into two parts the second of which
In this
case, however, we take the first part, L, or Af,, as being

that for the curved airfoil in the undisturbed flow

where §¢,=8¢,=0. Then the additional part, AL or

AM, is the additional effect introduced by 8¢. and &g,.

As before we let p*, q*, otc., denote conditions cor-

responding to Ly, My, and let Ap, Agy, etc., denote the

additional pressures and velocities mtroduced by the
superimposed flow, 8q., 8¢,. Cy, and Ci, have already
been found and are given from (14) and (19) by setting
a=0, since U is parallel to the z axis,

(24)

The equation (16)
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It remains to caleulate AC: and ACy. Exactly as

*A
Ap=—pg:*0:= ~p { gt

i
Hence !
=L Q_
AL 2f s &
2x
AM = —pJ; g,*Ag. cot edﬁ.

where ¢* is given by the first bracket of (22) and Ags |
by the second bracket. Only the portion of (g* Agy)
which is an odd function of  will furnish any con-
tribution to AL and AA{, so that we may write

fﬁf(

AM= —PJ; (9e*Age)oga - cot 8 d8.

l)odd dG
(25)

It can readily be shown that all of the integrals of
(22) are even functions of §. Remembering that &
and r are merely two different notations for the same
variable, it follows from the geometry of our conformal
transformation that r=+r; and r= —m refer at the
airfoil to points on the top and bottom surface with
the same value of z. Since the airfoil is infinitely thin
these points are infinitely close together. ¥, &¢., 3¢y
are assumed to be continuous functions of position so
that y (—n) =y (+7), 3(—1)=8¢(+1), 3 (—1)=
8qy(+7), or y, 8¢., 8¢, are all even functions of r.
Fram (21) it follows that 3¢,, 8¢s are odd functions,

and hence 8¢, 8¢, %fare all odd functions of = (or 6).

The three integrals in (22) which contain § may now
all be written in the form

1O=[7F ot 5
But

dr, where f (—r)y=—f (+7).

1'+0

and writing —7=¢ (ss.y)
1¢-0= [ "7 (—ercot 257 ds
e— p—0
~— [T ot 27y
But f(—o)=—F (+ ¢);
2« o—0
o I(—0)= +ﬁ £ (@) oot 252 dp=1(+0)
Hence the three integrals containing 6 in (22) are even

functions of 6, the other three integrals are also even
functions since they are constants with respect to 6,

and 3¢ is an odd function.

I : @*A ) =_Esmaffk%(r)cot1jdr
in Section IT, p must be replaced by Ap in (23), where | *~ 0 ¥AGe ) eaa

—f é9~(-r)cof: d+59‘f 4 o1 lar

5q= dy ar
. d cot 1-j
U dy T—0
+2—l_6g.{ o E’ cot —— 2 dr

dy
‘-fd?_ cotb E df}

or using (21) and integrating the last term in each
bracket by parts

(@*Age)oss= —2TU,sin G[J:’%(r) sin 7 cot Z;_9 dr

—Ik% (r) (1+ecosr) dr
+ﬂ'f drc t'_d %,L 1— cos-r}

Substituting this in the expression for AL of (25)

AL=——U (f)smr[f cot——da:,d-r
—f éQ-'(r) (1+cos 7) I:f dﬂ]dr
+§g~f2'dy[ f ot 50 de]dr
_% 0 l-GOS rl:j; d&:ldr

and corre;.spondj.ngly
Aﬂ.{=2pTU’U;h%(r)sinrl:ﬁhcosﬂ cot o ds
—fzrég! (r) (1+cos7) I:fgrcos ] da:l dr

ag‘ 02‘ dy [f cos 9 cot —dﬂ:l dr

¥ 2’——LU cosﬂd&]dr

o 1—cos~

e have seen In Section IT that

fhcos g cot %ﬂ do=2rsin 7
JO
and in the same way it is easy to show that
2 T—0.,

J; cot 5 de=0

Hence
dr
_2pu={ g [ S f e (14005 ) d-r}
(257
ang=sor % [ sin r dr+ [ % it - )

il
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or, returning to the original variable of integration,
6, integrating the first term of AM by parts, and
defining AC; end ACy in the normsal way for our
chord of 4,

6g_ ydé # 3qy :
U 1 cos& J; Ul’(1+cose)d6
1 dq,

ACy=—% 277 ), y 08 ed9+4f % (1 —cos 26) do

Remembering that y, §¢, are even functions of 4, and
using (24)

AC,=2 %’E 0L0+2L'§%' (1+cos 6) d
AC=22% 0 + 1 {738 (1 —cos 20) a8
u=2477 Ung §OU(—COS )

In order to obtain more useful expressions for the two
integrals we express %" as a Fourier series in 8, which

tekes the following form, since Iqj“ is an even function,

_59!_2
7= d A, cos nd

We now introduce our second simplification by assum-

0%

ing that in the cases of most interes is a fairly

slowly changing function of position, so tha.t at the
airfoil it can be sat.lsfactorlly approximated by the
first three terms of this series. We assume, therefor,

(26) %!-nﬂ(ﬁfh cos 0+ .4, cos 26

where A4, A;, A are constants. Then

ACL=2 3 Cryt2mdo+ 5

AO_M:Z %E O'Mg'['%-AO_E‘AZ

We must now find general expressions for Aa, A,
Aj;, and shall obtain such expressions in terms of an
airfoil of arbitrary.chord ¢ instead of for the special
case of chord =4 which has previously been discussed.
Since =0 should still represent the trailing edge and
6= the leading edge, we have as the generalization of
4)

x=% cos 6.
Substituting this in (26)

5 4 84
He by -3 +2F o+ T

Letting the subseript zero denote z=0 for the time
being,

REPORT NATIONAIL ADVISORY COMMITTEE FOR AERONAUTICS

4=(H), 1ol d (B)],
‘=§[dz B,
~ 1ol 2 6%)]

In order to s1mpl1fy the notation we shall, in the futu.re, o

drop the subscript zéro and let g; + a8 well as -5’.

represent the value of the indicated quantity at the
center of the airfoil. Then we have

d (5g,\ . 5
—"{7%““% ;td, DEE)

8¢z
Each of the terms of (27) has a very snnple physical

significance. The terms containing %‘5

27)

are just those

which would arise if the sairfoil were in a rectilinear
flow in which the velocity was increased from U to
U+38g,. Hence they are the increments due to the
¢ component of velocity, and may conveniently be

denoted by A;Cr, A:Cy.
angle of attack at the center of the airfoil, and the

%—{ is the change in effective

terms in % are those which would appear if the angle
of attack of the airfoil in a rectilinear flow were
increased by Aa=%l‘ They may be thought of as the

terms due to the ¥ component of velocity, and may
therefore be written A,C;, Ay Cx. The term containing

4 aq,) occurs because of the fact that the super-

1mposed flow is such that the streamlines at the airfoil

havs & curvature symmotrical about the airfoil conter.

The streamline curvature has the same effect as would

an additional camber of equel and opposite curvature

on the airfoil in a rectilinear flow. Since this curvature

is symmetrical about the airfoil center it furnishes no

contribution to the moment. The term in the lift

may be thought of as the “curvature term” and
written AqC;. The other two terms arise from the

fact that the superimposed streamlines have also an

S-shaped or double curvature, and the effoct is the same
as if the airfoil in a rectilinear flow were given an

S-shaped camber of equal and opposite amount.

These terms may conveniently be described as the

“double-curvature’” terms and written AgC:, ACk.

All of the above physical explanations may very

readily be verified.

It has already been mentioned in Section IT that the

ordinary expressions for €, and Cy can be brought
into satisfactory agreement with experiment by mul-
tiplying both the angle of attack and camber terms by
an efficiency factor s.

followed, i. e. all the terms due to effective angle of
attack or effective camber should be multiplied by #.

Hence to bring (27) into
agreement. with reality the same procedure should be |
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In view of these reriarks the following convenient |
method of summarizing the results of this section has
been adopted: -

OL=0L,°+ACL 0g=Oyo+AGH i

ACL,=ACL+A,CL+HACL+28,C,

AC =2, Cu+A,Cxy F A

‘&g 3¢, Cuy !

A;OL=2 ﬁ: CLG A:Og=2 ﬁ OM°=‘—CT— A:CL i
(28)¢ AyCr=2x7 % ﬂrO.v— ‘U =7 ArOL i

AcOr.—§ 7t (gr 54y

éq 4
ACe=g 7t g3 ( U') A4Cs= 6-1 "" )
= g AdOL

where:

Cyy, Cu, are the coefficients of an airfoil in an un-
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method consists in replacing the airfoil by a vortex
filament or lifting line fixed at a definite position along

i the airfoil chord. This method, which has been widely
. used, gives the variation in induced velocity with

variation in the lift coefficient of the airfoil as the angle
of attack is changed. However, the effect of the varia-
tion in the moment coefficient or center of pressure
does not appear. In order to take account of this
factor Prandtl, among others, has employed the device
of taking the vortex filament at the center of pressure
of the airfoil. Then, as the angle of attack of the air-
foil is varied, both the strength and position of the
equivalent vortex filament change to correspond with
the change in the lift and moment coefficients of the
airfoil. This simple method suffers from the defect
that, in finding the induced velocity at a point fixed
with reference to the airfoil, the geometrical arrange-
ment determined by the point, the vortex filament,
and the undisturbed velocity U, changes with the
angle of attack. .

Karman’s method, which is here followed, takes into

disturbed rectilinear flow with velocity U in the direc-
tion of the positive z axis;

(., Cy are the coefficients of the same
airfoil in the same flow but with the veloc-
ities &q., 8q, superimposed;

3q., dq, are the values of the additional
superimposed velocities at the center of the
airfoil chord, except when &¢., 8¢, occur in
derivatives, in which case the values of the
derivatives are to be taken at the center
of the airfoil;

plane

account variations both in Cp and also in O, but
6q,7

t is the airfoil chord; and
7 is the efficiency factor which is most —7—>
conveniently determined from the faef that
2xr is the slope (in radians) of the curve
of 0, vs. angle of attack for the airfoil at
infinite aspect ratio. _

1vV. THE SUPERIMPOSED YELOCITIES FOR A 2-DIMEN-
SIONAL BIPLANE

In this section we shall not develop the complete
theory of the 2-dimensional biplane, since the results
are not of any considerable practical interest, but shall
restrict ourselves to the determination of the disturb-
ing velocities at an airfoil caused by the presence, in an
otherwise rectilinear flow, of & second airfoil. The
results so obtained will then be extended to the case
of the 3-dimensional biplane in the next section. Since
the results of this section are intended to be used for
the biplane problem, an approximation method of
finding the disturbing velocities is adopted, in which
the disturbing velocities due to an airfoil are deter-
mined at a point whose distance from the sirfoil
center is of the order of magnitude of the airfoil chord
or larger.

In finding the velocities induced by an airfoil at &
point some distance away the simplest and most natve

% oo
sq, Fx
» y 69,
S
r R
z
o P plane g
{ ) /—-— ’
CORN *
™ -Vorfex —_—
AN “Vorfex pair 174
— -
Fraurx 4

Nortx.—~The vortex and vortex pair are actually superimposed.

without requiring any change in the geometrical
arrangement as these quantities vary. It consists
essentially in replacing the airfoil by a vortex filament
and a vortex pair or doublet, both of which change
in strength but not in position with variations in the
airfoil C; and Ow. The position of both the vortex
and the vortex pair is taken to be af the center of the
airfoil chord. The following analysis, which justifies
this picture and puts the results in simple analytical
form, uses the methods of the complex potential

function and of the elementary Cauchy theory of the

complex variable, which are amply descnbed in
Chapters V to VII of Reference 1.
Lot w represent a complex potential function such
that for the z and { planes of Figures 1, 4
go—ig=32 A
z r .
N

l& 1 }\ | i i 1N
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where ¢ and 2 are connected by the original conformal
transformation (1). Consider initially a uniform,
rectilinear flow about the straight line airfoil in the 2
plane given by
wy (2)=Uz
“g=U ; &=0

This corresponds to the flow about the unit ecircle in
the { plane:

(29) w®)=U(s+3)

As the straight line is deformed into a curved airfoil as
in Figure 4 the velocity at a point P, is altered. We
must determine the additional or induced velocities at
P, which may be denoted by 8¢,, 8g,. In carrying out

the analysis we require the airfoil to have its leading |

edge at x=—2 and its trailing edge at z=+2, but
exactly as in Section IT the final results will be valid
even when the restrictions on the leading edge are
removed. As before the analysis is largely carried
out in the { plane, i. e., we must find at the point P,
corresponding to P,, the additional velocities intro-
duced by the deformation of the unit circle into the
pseudocircle.

Let w, be the potential function correspondmg to
these additional velocities. Then since the sdditional
velocities must vanish st infinity we may write in
general.

w; )= U(AologH; ";3 +‘—§f+)

where the A/s are complex coefficients of the form
,.‘11 =aj + ’Lbj

and a; and by are real quantities.

With the scale we have chosen the coefficients A,
A,, ete., must have absolute values of the order of 1
or less since, except for the circulation given by A,
conditions even fairly close to the circle are not vio-
lently altered by the deformation of the circle into
the pseudocircle. We are interested in conditions
at P, where R is of the order of the airfoil chord =4.
Hence in the ¢ plane r is of the order of 4 and the

magnitude of the successive terms in u—)’g—) is at most
11 1
.4-0 log 4, Z, El « s -@’ .« ete.

Since wy () is itself a small correction factor to be
added to w, (¢) at Py it is apparent that to any degree
of practically interesting accuracy terms in w;, () of

higher degree than E meay be neglected. Hence we

write

0y <r)=U(Aa log £+

These terms have definite physical significances as
follows:
w="UA.%og £ =T (a+1bo) log ¢

represents a flow due to a source at the origin (a,) plus
that due to & vortex at the origin (b,).
not introduce any net sources or sinks if the pseudo-
circle is to be a closed curve, we must take a=0.
Similarly

A1 G1+‘ibl

Since we must

§ §

represents the flow due to a vortex pair at the origin
with axis perpendicular to U (a;) plus that due to a
vortex pair at the origin with axis parallel to T (b).
The first gives an increase in size of the pseudocircle
symmetrical about the 2 axis, and corresponds essen-
tially to an increase in thickness of the airfoil sym-
metrical about the mean camber line. As already
mentioned, Jeffreys has shown that even near to the
airfoil the effect of such a thickening is small, hence
this effect may be entirely neglected for our purposes,
and we may take A;=1b;. Hence

by
£

where the first term corresponds to a vortex at the
origin and the second to a vortex pair at the origin
with axis parallel to U.

The velocities in the { plane corresponding to this
flow are given by

(80) w; () =1U<bo log ¢t ++

) .8¢, 1d b b
Boi e ipeifbontion)
and in the z plane, from the first equation of Section
8¢z .0 (% : 80y
U U= 1/1'2

Since ¢ is of order of magnitude 4 at Pg, 1/{? is of order
of magnitude 4¢ and we have already neglected terms
of this order relative to 1. Hence we may take

%’._1‘, %=§g—i %T!=i{% (cos 6—1 sin 6)

—:% {cos 20—14 sin 26)}

or

= 3 _, sin0_, sin 20
v ™ r 77

Uy 5,00y 00020 e

r!

In order to express the velocities in terms of the z

plene coordinates we make another approximation
which introduces errors of the same order as those

slready introduced; i. e., we take =R and 6 =4 where
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R, ¢ are polar coordinates of the point P, Hence
finally
_% b smz?
Q

E_iz_gj,!:_boco;d_!_blco%?ﬁ

*

sm2&

(81)

We must now find more useful expressions for the
constants by, b;, and shall use the well-known relations
of Blasius for this purpose. With our conventions
Blasius’s equations for the lift and moment acting on
a body in a flow defined by the potentiel function w

T sl
ar=tm f (‘éi:)' 2de

where the integrals are contour integrals about any
closed curve ¢ surrounding the body, and R means
‘‘real part of.” Transforming to the { plane

(dw
—tx | g
¢ di‘
M= "3& ( )<;+;)d;

where ¢’ is the closed curve in the ¢ plane correspond-

ing to cin the z plane. Writing
&)
d¢
o+ g 2.

df
L=‘“‘Bf (Co+ + +

: )d;

M=%£L (ek+a+BF2stpin. .. ) e

and by Cauchy’s theorem on contour integrals

L= —g B (2xic) =03 (&)
M=§ R (2xi [cgtca)) = — =3 (o)

VWhere 3 signifies “imaginary part of.”
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Applying these results to the problem in hand, we
have from (29), (80)
141b

w €)= )+ @)= U (3 +ibo log £+
24 2ib; +5*
_2+2ibkbg

<£ =0 <1 +2"‘b‘l R

21.60
+ - )(1+$.,+_ Y- (145
144 + 215,

srzh, L)

6, =2ib, U2
cotes=— (b +2ib,) TP
& L=2xp by
M =2xpU;
Hence for an airfoil of chord i

bo=-E ¢ b= ""ﬂ

4x
and substituting these expressions into (31)

% C'z, _ O (R)

(32)
B Sper+ 2 (2 )
=-—n !’-l- Ca
R
afng e
()

Lower
wing

e

FIGTRE §

Tt can easily be verified that these are just the velocities
which would be induced by a vortex at the center of
the airfoil whose strength was proportional to Ci, and
a vortex pair at the same point with axis parallel to U/
and whose strength was proportional to Ci. The
procedure in this verification is exactly analogous to
the above except that it is conducted entirely in the
2z plane. The vortex and vortex pair which serve to
replace the airfoil are indicated in Figure 5.

[
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By introducing the following notation (32) c¢an-be
rewritten in a form more suitable for use in connection
with the biplane problem. We shall hereafter use a
subscript ¢ to denote the upper wing and ; to denote
the lower wing of a biplane. It will often be necessary
to use double subscripts, in which case the first sub-
. seript determines the position at which a quantity is
measured and the second indicates the cause giving
rise to the quantity.

* For example, if @ is any such quantity, then @y is
the value of the quantity at the upper wing which is
produced by the presence of the lower wing. Unless
otherwise specified, all such quantities are measured at
the mid-point of the chord of the wing in question.
It will be convenient to introduce the ““serodynamic
stagger,” B, and the ‘“‘aerodynamic gap,” H, as indi-
cated in Figure 5. B8 is defined as the angle between
the perpendicular to U and the line joining the mid-
points of the two chords, and is taken as positive when
the upper wing is ahead of the lower. H is the dis-
tance between the projections of the two mid-points
on & line perpendicular to U. Since the z axis has
been taken parallel to U the relation between g and ¢

is ﬁ=z?—7—;- when the effect of the lower wing on the

upper is considered, B=0—32—T- when thé effect of the

upper wing on the lower is considered, and that be-

tween H and R is
H=R cos 8.

With these conventions eqtrations (32) become

(argf)n o & cost ﬁ+

=(B).-

)Ig—— L’t’co ﬁ+—-( )cos’ﬂsmzﬁ

cos’ g sin 28
-

Ll t

y Hsmﬁ cosf— 4M’< ) cos”ﬁcos 28

@3

C
m(—gbé = Esm B cos g

- @)

where the pre-subscript—e has been introduced to in-
dicate that the results are for a 2-dimensional biplane;
i. e., one with infinite spans. It should be noticed
that the second group of equations relating to condi-
tions at the lower wing can be obtained from the first
or upper wing group by interchanging the subscripts
1 and 2 and replacing 8 by B+ and H by —H. This
is & general result and permits us in the future to deter-
mine all effects at the upper wing alone, obtaining the
corresponding effects at the lower wing from the final
upper wing expressions by using these simple changes.

cos? 8 cos 28
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Y. THE 3-DIMENSIONAL BIPLANE

In this section the results of the previous scctions

are extended so as to give the lift and moment coefli-
cients of the individual wingsof a biplane in terms of the
assumed coefficients of the same wings when acting as
monoplanes in an undisturbed flow. The parameters
which enter in addition to the monoplane characteris-
tics are the two spans, the two geometrical espect
ratips, the geometrical gap and stagger, the decalage,
and the geometrical angle of attack of the biplane
cellule. The effects of sweepback and dihedral are
not considered, but the latter at least should have little
effect and can easily be handled by considering an
equivalent biplane with no dihedral and with a gap
equel to the mean gap of the actual biplane. In view
of the complexity of the problem, it is unavoidable
that the notation should become somewhat cumber-
some, s0 that the various symbols and conventions
employed are introduced in the hody of the text as
they become necessary, and the final notation is then
summarized at the end of the paper.

Asfar as the author is aware the present problem has
been considered in & general manner only twice—by
Betz (Reference 5) and by Eck (Reference 6)—al-
though certain elements have been discussed by

Prandtl, Glauert, Munk, and others. Betz uses the

simple “lifting line’’ method as described in Section IV
and the results of his theory are known to be soriously
in disagreement with experiment. Eck does not give

any results for biplanes of unequal spans, and his

analysis appears to neglect one factor which may be

of some importance.? Hence there seems to be some
justification for a new consideration of the problem,

especially in view of the considerable practical interost
which. it holds. In the following induced drag is not
discussed, since Prandtl’s classical multiplane thcory
(Reference 7) gives the total induced drag of a biplane
very satisfactorily. However, in the Ia.tter theory
the distribution of lift between the two wmgs is assumeod
as known, so that from this point of view as well as
from that of structural design a determination of the
relative lifts of the two wings of a biplane is of consider-
able importance.

We reduce the 3-dimensional problem to an essen-
tially 2-dimensional one in the normal manner, using
the strip or wing element hypothesis in which the flow
around. each element of the wing along the span is

assumed to be such that the relations of the 2-dimen-~

sional airfoil theory hold. We further assume that the
lift and moment are uniformly distributed along the
span of each wing whenever mutual interference effects

1Tn caleulating the Indaced veloclty at one wing due to the traillng vortices of the

other, Eck Uses Pohlhansen’s results, which are valid only for the case In which both
wings are {n the same transverss plane. Hencs Eck neglects the effect of staggor on
this portion of the downwash.

L}
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are under consideration. Pressure distribution exper-

iments indicate that this assumption is not a bad one !

even in the case of biplanes with a fair amount of taper.
It should introduce enly minor errors when applied to
such interference effects, although it is entirely unsuit-
able for a treatment of the monoplane problem. For
simplicity in the carrying out of the analysis both wings
are considered as having rectangular plan forms,
although the results are expressed in terms of span and
aspect ratio so that they may be extended to other
cases. The above assumptions imply that, whenever
mutual interference effects aré considered, the lift and
moment coefficients for all elements of a particular
wing are the same and are equal to the coefficients for
the complete wing. The actual disturbing velocities

!
!
:
|
b
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strength and extending from wing tip to wing tip
along the center of the chord. However, for the finite
wing the two trailing vortices implied by the assump-
tion of uniform lift distribution must also be considered.
They are assumed to extend from the wing tips down-
stream to infinity and to have their axes parallel to
the velocity U. In order to fix ideas we shall consider
the disturbing velocities caused by the lower wing at
the upper wing. Then the lower wing must be replaced
by a horseshoe vortex of breadth b; and a vortex pair
of the same length, as indicated in Figure 6, where b
denotes span. The velocity induced by this system

at & point P of the upper wing is to be found, and then

the mean value of this velocity over the upper wing.
is to be obtained by integrating over b,.

b,
Z='2

2
P *
Y .
z=5./2 N 7railing
/ vortex
T’ Bound vorfex(C)
Vortex poir(Cy)

Y8

Trailing

r

~
-0 _J
="z

vorfex

FISURE &

at one wing due to the other vary along the span.
Hence, in accordance with the above assumptions, they
must be replaced by equivalent constant velocities
obtained by, taking mean values across the span.
VWhen these mean values have been determined they
are to be substituted into equations (28) in place of
the corresponding velocities which occur there.

The first step in this procedure is to find the dis-
turbing velocities at one wing caused by the o‘her.
In Section IV it was shown that the disturbing veloci-
ties due to an infinitely long wing could be calculated
by replacing the wing by a vortex and vortex pair
extending along the center of the wing chord. Hence
8 finite wing with constant (', Ci, and chord is to be
replaced by a vortex and vortex pair, each of uniform

If, as in Section IV, we write og=the velocity
induced at a point P by an infinitely long rectilinear
vortex of strength T, then g is the velocity which
would be induced at P by the vortex T in a
2-dimensional flow. If ¢= the velocity at P due to a
finite length of the vortex ', then the well-known law
of Biot-Savart may be written so as to give the follow-
ing purely geometrical relation between ¢ and og:

r

= C_Oﬁ’_z_c%i ,
where ¢ and «’ are the angles between the vortex
line and the lines joining the ends of the vortex seg-
ment to P. The angles ¢ and ¢’ for the bound vortex

of the lower wing are indicated in Figure 6. Choosing
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the coordinate system indicated in the figure with the
origin at the center of the lower wing, z axis parallel
to U, y axis perpendicular to U, 2 axis along the span,
and letting r, 8, z be cylindrical coordinates of P, then

g=qe 2:=0
= als wfz=0

Hence the expression given above determines the
relation between any component of ¢ and the corre-
sponding component of »g, since ¢ and ¢ are parallel.
It might be expected that the same geometrical
relation would also hold between the components of
velocity induced by a finite, rectilinear, uniform
vortex pair and those induced by the same vortex
pair extended to infinity in both directions. An
investigation of this point indicates that for a vortex
pair the Biot-Savart geometrical relation does hold
between ¢, and ¢, while the relation between
¢s and «gs is somewhat different. The actual equa-
tion connecting ¢ and gy, which is too complicated
to be conveniently used here, does not differ greatly
from the Biot-Savart relation for cases of interest in
the present problem. This is particularly true when
mean values over the spans are taken. Also it must
be remembered that the total effect due to a vortex
pair is fairly small compared with that due to the
corresponding vortex in most cases here considered.
Hence it appears thet for the purposes of this analysis
it is satisfactory to assume that the Biot-Savart
geometricel relation holds between the corresponding
components of ¢ and «g whether the velocities are
induced by & vortex or by a vortex pair.

(a) Effect of the Bound Vortex and Vortex Pair.

In view of the preceding remarks and since we have
assumed both (7, and Cy constant across the span, we
can discuss together the induced velocity at P caused
by the bound vortex and by the vortex pair We have,
therefor, for the mduced veloc1ty at P ansmg from both
of these causes

( %> (6%: cos ¢ —cos ¢’ cos qo
21
bl
q,,) (%)21 cos ¢ -cos ¢p

where (g,) and (_er are the appropriate ex-
21

pressions of (33) as deduce.d for the two-dimensional
biplane (infinite span). We must now find the mean
values of these quantities over the upper span and
shall use a bar to denote such mean values. Then

(ag’ . 'b,f.a.(aff) dz,
B () =a (%)

2:=0
oﬂr=0

and similarly for (ig;
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are both constant with respect to 2z, whence

(ﬁ_)” <5Q=. - 2—15;fj:2 (cos p—cos ¢’) dx

)21 ( )21 2Tf /2(00540 cos ¢’) dz.

Deﬁniﬁg the aerodynamm stagger 8 and gap H exactly

ag in the preﬂous sectmn, we have for the point
Py

Z+b'[2

. ;o z—Yy
STy e Y W :

A little calculation now gives, since cos 8= E’%

]
1 (2 S H b+ ?
2—62‘[_%!((:05‘;3 —cosga-)d:z=b—2 o8 ﬁ[\/l + (_1‘203_! cos B)

i) |

It is convenient to introduce the following parameters:

[u=b—1§}’—’ cos B I+,
(34) b—b
W= cos B r' =1+

in terms of which we have

by
1 ‘ 2 ; r—r
-— €0S ¢ —coS ¢’} dz=

(5).- (%L %

EQ,) ﬁg_r,
21 =

Hence -

21/-‘ IJ

Now '__1'_;__:1troducing the expressions given in (33) for_____'__ L

(Qg-)il and 6q')21

aq:) %é} =ﬂ+_ ) cost i 25]
<‘%)n=[%f%cosﬁ sin ﬁ-ﬁ(ﬁ
cos? —r’

Since we are considering rectangular wings the two
aspect ratios are defined as follows:

Tls

- A b'A,
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Then the above equatmns may be written in the form l Hence

Cuy
(%5 » 41'1—412; Cr,(r— r)cosﬁ-f—
(') (r—+) sin 2ﬁ] ?

|3 _ 1 bl_ . G

(udu") (r—r’) cos 25]

These expressions give the mean velocity at the upper
wing induced by the bound vortex and vortex pair
associated with the lower wing,

(b) Effect of the Trailing Vortices,

In accordance with our simplifying assumption
which consists in replacing a wing by a horseshoe
vortex and by & vortex pair, we have now to consider
the mean velocities induced at the upper wing by the
two vortices trailing downstream from the lower wing
tips. These vortices afford no contribution to 8¢,
so that all that must be calculated is their effect on

%’- Let us consider first the effect of the vortex

extending from the right wing tip, 2=20,/2, to infinity.
The Biot-Savart Law gives for the resultant induced
velocity at P

(35)

_ 1+cos ¢

where ¢ is the angle between the direction of the z
axis and the line joining the wing tip to P. g is
given by

Iy 1

T /H’+(——z)

where T, is the circulation around the lower wing.
Hence

_ Ty " z
! 41\/H+(%—z)’[1 —\/H’+z’+(%‘-—z)z] .

This velocity is perpendicular to the plane containing |
P and the vortex so that the component parallel to

the ¥ axis is
61
2-

Vo Gy =

&=—q

! &= ~""gg

- term in which z is replaced by —az.

The relation between I'; and the lift coefficient is given ;
by !

L1=0L1§U’t1bl= (U+ Bg:) rlbl i
but 3¢; is small compared with U/ and its inclusion

gives only second order terms in the final result, so !
that we may write with sufficient accuracy \

Co U
2

1=

OLIt]_ U

b__ |

R [1+ = ,]
H’+<:23—z) -\/H’+x’+(-21—z)
The other trailing vortex will give a corresponding
Hence for the

resultant vertical velocity induced at P by the trailing
vortices:

b
3qy OLIJ_ 2 z
() = I8 |
. 2+z -1+ z 1
H=+(§2!+z)’ \;’H’+x’+<§’+z)’t

As before this expression must be integrated over b,

in order to obtain its mean value. The integration
gives directly
b1+ b\
@), -G o )
U 87rb, H,_{_(b:;bz)z

H’+a:’+(zl‘ib—’):—z /1;+z=+(@——b’)’+z
/H’+x’+(bln’)+ \/H‘+z’+ bi— b’) -z

By introducing the parsmeters defined above and
performing a little reduction this leads to the simple
expression

OLI bl

(36) (B),=—mire

giving the mean velocity at the upper wing induced
by the trailing vortices of the lower wing.

(¢} Complete Mutually Induced Velocities.
Combining (35) and (36) we get for the mean value

+log

r+sinﬂ
€ +sn 8

| over the upper wing of the total velocity induced by

the lower wing:

3\ _ 1 b
\U)n oAb 1[051(1- ') cos 8

+ A—"l‘ozﬂ') (r—r')sinzﬁ]

@u o4 5[051{(" ') sin 8

r+gsmf 0"1
—log g7 +smB}

In order to obtain the streamline curvature corre-
sponding to these induced velocities we must find

HEORLEAC]

T k") cos26 |

i

il
i

|
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where the values of the derivatives are taken at the

center of the upper wing chord. From the geometry of
Figure 6 it appears that

d_ _cos’g d
Y - a7 R
jli:@l%—ﬂ cos* B 5‘3—2 sinﬂcosﬁdﬁ)

Remembering that g, u/, r; # are functions of B, the
desired integrations can be carried out in a perfectly
straightforward manner. The resulting expressions
are 8 little lengthy, but the final results can be mate-
rially simplified by the introduction of certain auxiliary
functions which will now be deﬁned Cons1der the

coefficient of Cf, in (5—1-)

(r—1") sin p— log::__z]ig -
=[r sin —log (r+sin B)}— [’ sin B—log (r’+sin £)]
=2¢ (u, B)—2¢ (', B) =2E (say) .

Hence this quantity 2E, which is & function of », ¢/,
B, can be expressed as the difference of two functions
of only two variables, the form of the two functions
being the same and only the arguments differing.
Curves giving e in terms of 4 (or ') and B are given
in Figure 12 from which E may readily be calculated.
Tt is found that the results of the differentiations can
similarly be expressed in terms of the differences of
pairs of functions, the functions in each pair having
the same form but having arguments px, 8 and ', 8

respectively. In this form the results may be sum-

marized as follows:

( U)zl 474, 0 [051 (r—r")cos B

+9— (ut ') (r—7') sin 2,3]

59_’ I 61 - R
I')21 4'KA1 E[OLI.ZE '

Oul(}rl'p’) (r—1') cos 25]
37
®7) d /8g,\ _ bxcosﬁ[o .8F
da: U 21 4‘KA1 bn o’
C’m(“_l_ ’)SF*]
1 bycos’p
208 - e -0ure

+Zf"ll(u+ ) 32@*]

‘one wing caused by the presence of the other.
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where

iR

E=e(y,B)—e ', 8)

Fe=f (u,8)—f W', 8) F*=f*(u,B)—f*(', 6)
G=g(,B8)—g W, G*=g*uB)—g*,8)
and

e(u, B ==12‘ [r sin 8—log (r-+sin B)]

- J‘(u,48)=1[1+’~‘f sin? §—r cos’ B:I

smﬂ

- f"'(#:ﬁ) £ GOS 28+r (6 cos? B— 1)]

38) ¢

g (, ﬁ)— [37' cos? B+38 7 £ cos 28

1

43
+5 3+T

b
g* (o 3)=3—2 r (30 cos* B—27 cos* +2)

2
+“—(20 cos* ,3—24 cos? B+5)

(2 cost §—3 cos® 8+ 1)]

Graphs of e, f, * g, g* have been constructed and are
given in Figures 8-12. From these curves E, F, F*,
@G, G* can readﬂy be obtained for any partlcular case.

(d) Effects of Mutual Induction.

The results g1ven in (37) can now be introduced into
equatzons (28) to give the changes in the coeficients of =~~~
As a
generalization of our former notation we write:

Cray oy Ciyy Cuy 8re the coefficients of the indi-
vidual wings of the biplane, and

Cyor Crapy Cutrgy Caeyy 870 the coefficients of the indi-
vidual wings when acting as monoplanes in an undis~
turbed flow at the same geometrical angle of attack
as that which they have in the biplane, when the latter
is in the particular attitude under investigation.

With this notation (28) becomes s
B0

AdOL,="—81’t,2 dx"’ %Ll,em

A simplification is achieved by writing

Cu,
'—-;f‘(#'l'n)

A,OL’= 2

so that the changes in the upper wmg coeflicients due
to the presence of the lower wing may finally be
written:
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b
A,CL’ =0510Lm<bl ; Af cosf8

611' r

+Cy1’0;,m<b ] ) sin 28

8,0 =Cu(f 1) E

et
—Cu/ %‘%r 2r)cos2ﬁ

ACy, =Cs, q“‘“") F

_0111' (’7 #+F F*

Ad,
9 as, =0 %ﬁ_’) a
+0u' (1 Bk ) G+
c
A,Oy"’"(::r: ASCL’

1
A.C’u" = E A'Ol'a

Adoﬂg'='é_ Adalq
A.Oz.’ = (A,+A.+A3+A¢) GL’
Ancu'g =(A;F A+ Ay) GM,

L
where A, representis the total change due to mutual
Induction.

In order to obtain the corresponding changes af
the lower wing the simple procedure mentioned at the
end of Section IV may be followed; i. e., in (39} the
subscripts ; and ; are interchanged, H is replaced by
—H, and 8 by 8+r. From the definitions of (34) it
follows that

p—p, p' o=y, oty r'—r’
Similarly from (38)
F—F, F*»—F* @——@, G*—-G*
E requires a little more care for

€ (F: ﬁ)""e (F:—ﬁ): e (F') B)—e (I-"s—ﬁ)
Hence if we define

E*=¢ (ﬂx-ﬂ) —é (P":—ﬁ)

then
E—=E*,
1% is convenient fo define
Cu.
, 2
A, (}‘ B )

in which case Cuy"—=Cluy’.

. Making these substitutions the following expressions
are an immediate consequence of (39):

b
8:Cy = CrnCrng (R 5o ) 005 8

()
A,OLl = OL,(bz 11) E*

(b r—1
— Cay F:i 5 )(:0525

’ B F,
+ Cly (ﬂ daddy
40 —p
.
()
C
A;Cyl Culo A:OL]_
A30y1='4— A'CDI
AdCary = BaCry

A..C’Ll = (A: + A'+ A‘+ Ad) 0}_1
L AnCliey = (At Ay +40) Ciny

(e) Effect of Self-Induction.
To fix ideas consider first the upper wing.
write

If we

Cry =iz + ACs, Oy = Caugy+ AC

! then we are trying to find AC, and ACw. In general,

C;, differs from Ci,, which implies that the downwash
at the wing caused by its own trailing vortices is differ-
ent in the two cases. This change in downwash causes
a change in effective angle of attack which may be
written as 8as, and a corresponding change in lift and
moment coefficients:

. 1
ACry=21n8ay, A;Cuy= %nﬁaz =3 A,Cyy

The subscript , indicates that the changes arise because
of self-induction rather than from any mutual inter-
ference effect of the two wings. The total change is
the sum of the changes due to mutual and self-indue-
tion, i. e.

ACL,= (A‘ +A¢) Cr[,a, ACE, = (A. + A,) 01{,

In order to calculate the value of 3a; we must introduce
a new assumption as to the distribution of lift along
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the span, since the uniform distribution employed in
calculating mutual effects leads in this case to infinite
velocities which are physically inadmissable. Hence,
for the present purpose we shall assume an elliptical
lift distribution giving a constant value of S, along the
span. This lack of consistency in the hypotheses
underlying the present theory is certainly to be
deplored from the standpoint of elegance, but it is
probably of little importance to the actual results
Assuming, then, an elliptical distribution

S ACL,
3= TAg
30 that

ACry= —%Ac&f - %{ (AnCiy+AsCry)

or finally
29/ A 1
(41) A= ﬁ%A,OM, AsCary=7 8404
and similarly
’ - /A 1
(417 A,0L1=-~i-—f2"—n/A%;A,,0,,,, AsCae, =7 8,01,
< y
U o \("2\ 1
S~
%
/T~
/
Jo
>
__[_r_. (: = ~— o

—— ~—

FiGURE 7

(f) Change from Aerodynamic to Geometric Stagger
and Gap.

The analysis so far has been entirely in terms of the
aerodynamic stagger § and gap H, which, for a given
cellule, vary with the geometrical angle of attack a.
We now introduce the ‘“geometrical stagger” ¢ and
the ““geometrical gap’ @ which are defined exactly as
in Technical Report Number 240 of the N. A. C. A.
(Reference 8), except that we take the reference point
of each wing at the center of its chord instead of at the

leading edge. From Figure 7 it is apparent that
g e .
E= cos ﬂ=cos I

Hence the parameters defined in (34) may be rewritten as

“ET cos o, u —bQGb coS ¢
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so that it now appears that they are constant for a
given wing cellule and do not vary with the angle of
attack. Hence all of the quantities in parentheses
in (39) and (40) are geometrical constants whose values
for a given biplane are independent of the angle of
attack. If we define « as the geometrical angle of
attack of the chord line of the upper wing (since this
is the reference line in the determination of G and ¢),
then
. B=c—0a

and all of the parameters involved in our problem,
with the exception of the monoplane airfoil characteris-

tics, are expressed in terms of geometrical constants of =

the wing cellule and the angle of attack c.
(g) Final Results and Method of Application.

The following form has been adopted as the most .

convenient method of summarizing the results of
this section:
Cy=Chy +AC, ACy =AnCi +ACy
Cu=Cuy+ A0y  ACy=A0nCu+A,Cux
AnCr =A:Cp + 4,0 +A.Cr + A0k
AnOu= 8,05+ A,Cac+ 840

Note: O is measured about the center of the
airfoil chord.

_bitb,

=g cosa 14+
B=oc—«c
u’=%-éﬁ’cos<r ¥ =~T+u2
E=e(u,8)—e,8) E*=e(u,—8)—el',—8) .

F=F(, B)—F (', 8)  F*=f*(u, B)—f*(',8)
G=g(ﬂ;ﬂ)_g(ﬁ"iﬂ), G*=g*(ﬁ";ﬁ)_g*(ﬂ'laﬁ)
| Upper wing

A:OL,= 01;101,20 (%l 1'2.—_'£ ) cos ﬁ

+Cuy’ 0"”(1} 3 A sin 28

C
A,O,,, 5“;’%,01,,

(42)

8,00=0u (3 1Y E—Cuy () % 7Y cos 26
A,0y2=“A,OL,

)F OM]_ ﬂ+[‘")F*

T A As
—__ R ’ i
e Ou(n Gy ) O+ 0wt (1 o L

AdOM, = ’é‘ AdCLQ

(8= (n i
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2n{A,
M=~ (24 A) BuCy  ACiy=5ACH
C,
Ou = ﬂ (l-"" )
Lower wing
bg" r

ACp = —CpCryy 5,25, ) o5
+ Oy Oy g—’;—:—i sin 28
ACu, = 0““’A o

“2)a 051=Ob,(b’ ”)E ~ i (P 2 5 Yeos 28
A,,Oj,l==Z__;m,c,‘ir.I

ALy = el #A:—z’;:) F+Cuy ('q B4 e

) 2_. /2
0= (s i) o+ (1 55

AiCry = L AdGIq
29/A
AIOLI (1 +ﬂ2/ﬂ/i4.|) A.CLI A‘Oyl == A;C’zq
C
Cuy =;"—’ (p—n")

The method of using these results is essentially one
of successive approximation. The following procedure
has been found by the author to be most satisfactory:

A series of values of « are chosen for which the
calculations are to be made. Usually four points
(say «=0° 4°, 8° 12°) will be found sufficient to
enable continuous curves to be drawn giving the
values of the final coefficients over the ususl fiying
range. The monoplane characteristics Oy, C. P.,

C.
Cuy, Z’f’ of each wing are then tabulated for the

conditions corresponding to these angles of attack

of the cellule. In msaking this tabulation it is best to |

first plot faired curves for the monoplane data and
then pick the values used off of these curves, since
experimental deviations from the smooth -curve
values are very much exsggerated in the suceceeding
calculations. From the monoplane data 3 may also
be determined or the average value of =0.875 may be
used. The quantities g, g, 7, 7" are now calculated from
the geometry of the wing cellule and the coefficients
in parentheses (\g—: 72-1_;1"1’ ------ 1 "‘;——l vk ste. ) are de-
termined. The values of 8corresponding to the assumed
o's are listed and the various trigonometric functions
required are tabulated for the o's in question. The
magnitudes of the auxiliary funections e, ---- g* corre-

sponding to these values of « (i. e. 8} are read from the
charts and E, E*, ---- G* are determined.
Values of Cr,, Cry Cuxyy Cu, 8T8 now sssumed and

AC:,, ACL, ACk,, ACk, are calculated. The assumed
_Eﬁantities Ciys -+ Cuy, may either be the monoplane
values, O, *++* Ciey, 0oF they may be values estimated

as more nearly correct by the calculator on the basis of
his experience. In any case from the ACE,, ---+ AC),
so determined new values of Oy, -+ -+ Ui, are obtained
from the calculation which will in general be different
from those originally assumed.

The process is then repeated, using the values ob-
tained from this first step. The results of this second
step are then introduced and the process repeated for
the third time. Eventually the assumed and calcu-
lated values of Cry, . .. . Oag will agree and these are
then the final results. With a little practice in as-
suming reasonable values to begin with it is often
possible to get the solution in a single step, and two
steps should almost always suffice. Even when the
first step does not lead to & solution it is often possible
to estimate the effect of a second step and so write
down the final result with satisfactory accuracy with-
out actually repeating the calculations for the second
time.

The process is, unfortunately, somewhat lengthy and
tedious but the author has found that, after a little
experience, the characteristics of & biplane at four
angles of attack can be obtained by one man in a
comparatively few hours. A portion of the data and
calculations for a particular biplane are given below as
an example and should indicate fairly clearly the
general method.

Equan Wve BipraNE
Duta Irom N. A. C. A. Technical Note Number 310. [Alrfol section—Clark Y]

A1=Az=6 bl=bg
e=+27° G@=0/8  No decalage
p=52346 r=5440 =088 Con' =.891Cn
p' =0 r’=1000 B=27°—a Cu’'=.8910u
bir—r' _byr—r’_ p+p’  p—p
B 0xd; b 2xd, M8 1, I _”A_,A =131
bin_banm_ _ @—p”
Bads bid; 147”A A7~ a1
b[ 7 r—op' b’ 1 r—r =396 211/A’ — 2T[A1 2‘27

5,4, 2 b4, 2 T+on/dy 1+2n4,
Consider «=8° B=19°
Monoplane data
Opy=1011 COuy=199 C.P.,=303% Tm_ 197

Cpy=1.043 Cipy=.199 C.P. =309% —X_ 19

Lo
ot

|
it

|
I
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Auwriliary functions
E=¢ (5.35, 19°)—e (0,19°)=.02—.03=—.01
E*=¢ (5.35,—19°)—¢ (0,—19°)=—1.70—.03=—1.73
Similarly F=—.63 F*=.95 @=.26 G*=.19
Also cos §=.946 sin 28=.616 cos 28=.788

This data for «=8° is repeated for the other angles
of attack to be investigated.
Equations (42) are then rewritten in the form:

- 50y = C, Cry, (118 cos B) + O’ Ciyy (:118 sin 26)
42’

in which the values of all the parameters independent
of a are introduced. Next a table of the following type
is prepared:

118 118 | .147 Q47| a2 J81 [.181 | .116 118
cosP singf| E | B* |coszs| F | F| 6 |6

S L1121 078 | —.001 | —.254 | .257 | —.066 |.124 | .000 | .023

in which all of the values gere filled in.

Considering a particular angle of attack, «, values
are now assumed for Cp, Cr;, Oux, Cuy, from the
latter of which (s, ("u,, are celculated. Equations
(42’) are solved using these assumed values and the
tebulated quantities. In our example («=8°) the fol-
lowing is obtained: (In working this example a=12°
was calculated first, so that in making the initiel as-
sumptions for a=8° the computer had the benefit of
the previous results. For this reason the imitial as-
sumptions approximate more nearly to the final values
than would be the case in general.)

Assume:
Cry=724 Cu=.133 (=986 Chy=.206
Then

A, =091 A,Cry=—031 ACrye=—065 A0, =—019

A:Ciy =018 A,Ciy=—.008 AdClary=—002
AnCry=—.024  ACL=.005 ACy,=—.019
AnCiy= 008  ACi,=.001  ACu,= .009 °

Hence 0r,=.992  Cu,=.208

Smmilarly ACp=-.316 ACy;=—.086 from which

Coy= 727 . Cuy= .133

The values of Oy, Cr, Cu;, Cu, originally assumed
are now replaced by the values just determined and the

A,Cry=Cr, (147TE)~Cu,' (326 cos 28)  ete. .

process is repeated. In this case the final result is
obtained after this second solution and is:

) C"Q: 208 Oy’_ = 133
After a liftle practice the calculator can often avoid

carrying through the calculation a second time, ob-

taining the final result by inspection of the first solu-
tion. - The present example is an instance of this,

YI. RESULTS OF THE BIPLANE THEORY AND COM-
PARISON WITH EXPERIMENT

In order to investigate the nature of the results of

the theory and to determine the agreement between
theoreticel and observed values, the characteristics

of twenty biplanes were investigated for which ex-
These biplanes were

perimental data were available.
all without dihedral or sweepback. In general the
agreement between theory and experiment is reason-
ably good, although the very considerable dispersion
in the experimental results often makes comparison
somewhat difficult. The sources from which experi-
mental material was taken are given in References

9-17, A discussion of the results for the mgre im- .

portant characteristics investigated follows.

The results for the lift coefficient of the biplane
cellule (Cyp) are comparatively simple. The curves
of Cy, when plotted agsinst « are very nearly straight
lines up to about ¥ Crme:, above which the theoretical
curves begin to curve downwards. The agreement
with experiment is in most cases perfect up to about
% Crmes. Above this point the theoretical curves
usually fall off somewhat more rapidly than do the
experimental ones. Biplanes with R. A. F. 15,
Clark Y, U. S. A. 27, and Gottingen 387 airfoil sections
were investigated. Variations in dCpyfde are very
small and are completely explained by the variations
in the experimental values of dCifde for the various

‘monoplanes upon which the calculations were based.
Hence we may conclude that changes in airfoil camber

have no appreciable effect on the slope of the biplane
lift coefficient curve. Airfoil camber does, however,
have a small effect on the angle of zero lift of a biplane
cellule (eqp). Assuming always no decalage the fol-
lowing conclusions may be drawn: For small camber
(R. A. F. 15) aop=cuar, where aoy is the angle of zero
lift of the airfoil section scting as & monoplane.
As the camber incresses, however, oz tends to be-
come lower than ag. For example, the experimental
data used gave for the Clark Y oo = —5.8°, while for
an orthogonal biplane calculations (and experiment)
gave approximately opp=—6.4°. Similarly for a
Géttingen 387 orthogonal biplane the results were

_ape=—6.7° ayp=—7.7°. Hence it appears that in-

creasing airfoil camber tends make ot the angle of
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zero lift of a biplane lower than that of the component
wings acting as monoplanes.

Staggers from —15° to +30° were investigated,
experiment and theory agreeing in general in indi-
cating that stagger has no appreciable influence on
the angle of zero lift. Stagger does, however, have a
small but noticeable effect on dCz/da. Zero or small
positive staggers give the lowest values, which are
definitely below those which occur for staggers of
+30°. The following table indicates the nature of
the results for equal wing biplanes with gap-chord
ratio of one and without decalage. The experimentel
values differ from the theoretical ones by not over
19, usually by much less.

RAFI5 |  Claky aste. 387 :

. o idCdsl o l dCrpide| ¢ |dCiyda!

- i [l

. e | |

b Vot o 3.30 o a2zr

W s oz | oam | @ | am
t

Glauert has given a very simple method of finding
dCry/da for equal wing biplanes without decalage
(Reference 18), which is apparently quite accurate
enough for all practical purposes, ex-

For the effect of biplane interference on center of
pressure position the present theory is in agreement
with experiment in indicating that the effect is very
smell. An accurate comparison is rendered difficult
by the very large disegreements between different sets
of experiments. In certain cases the agreement is
practically exmct, while in others there are consider-
able deviations of the theory from experiment. The
following tentative general coneclusions may perhaps
be drawn. For the upper wing the theory seems to
give quite accurate results. For the lower wing there
appears to be a general tendency for the theoretical
C. P.s to lie somewhat ahead of those observed, in
certain cases as much as 4 or § per cent. For practical
purposes, however, since the effect of interference is
always small, it is probably accurate enough to assume
that the relation between (. P. and individual lift
coefficient is the same in the biplane as in the case of
8 monoplane wing.

The most interesting and important quantity dis-
cussed in this paper is the relative lift distribution
between the two wings. It has seemed of most prac-
tical interest and convenierice to consider this point as
follows: Curves of the ratio “lift coefficient of the

cept in the case of negative staggers. I 1

In this latter case both Glauert’s and Lo N Z | SLER=

the present theories give values of AT P

Oy, somewhat higher than those deter-  as A3 ad"

mined experimentally. In the examples AO{PQ e\,x’f. e

which the author has investigated the —7 G\O;Ez : (es"*ﬂ -
present theory gives somewhat better 28 Py

agreement than does Glauert’s but thers %= pd /;‘? : —
still remains & small but apparently o« ;j"ﬁ

consistent discrepancy. Figure 8 gives » 2 E"?e

curves of Cyp vs. « for a particular | <

case to indicate the nature of this dis- B>

crepancy. Approximately the same f

types of curves are ob?ained in all 85 L1 o > = = e Ty v B

of the cases of negative stagger o

Investigated.
Decreasing the gap-chord ratio de-
creases dCpy/da as is-to be expected.
Quantitative data on this point have
not been obtained in this paper since the present
theory, in view of its approximate nature, is not valid
when the gap is much less than the chord.
Calculations bhave been meade for one group of equal
wing, U. S. A. 27 biplanes at unit gap-chord ratio and
zero stagger, but with varying amounts of decalage
(cf. Reference 15). Changing the decalage through
the range from —2° to +4° had no perceptible influ-
ence on dCp,/de, and the change in the angle of zero
lift was exactly what would be expected if there were
no biplane interference effects. If these results are
valid in general they signify that Glauert’s simple
theory mentioned above may be applied to equal wing
biplanes with as well as without decalage.
41630—31——43

FIGURE 8.—R. A, F.-15 equal wing biplane
A=s,5:-1.o, e=—15,0°
No decalage. Experimental data from R. & M. Nos. 857 and 818.

. upper wing to lift coefficient of the biplane’” have been
plotted as ordinates against biplane lift coefficients as

]

0—’ vs. C’LB)- Unfortunately the quantity
Lp

'
i
| abscissae
OLJC’LB is extremely sensitive to small errors in Cg,
! and Cy,. For example, a very small change in effective
; decalage will change Cr,/Cry from plus to minus infin-
I ity in the neighborhood of Crz=0. Thus very slight
! exrrors in the settings of the wings, slight variations
| in profile, and very small amounts of wash-in or wash-
| out will cause large varistions in the experimental
! curves, particularly in the region of small lift coeffi-
| cients. Several of the experiments were conducted by
| the pressure plotting method, in which cases it was

1
+
t
!
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necessary to assume the coefficient of normal force
equal to the lift coefficient, and it was often impos-
sible to apply any legitimate corrections for the effect
of wind tunnel interference. In addition practically
all of the experiments were made at comparatively

REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

| larger lift coefficient than the upper when each was
tested separately as a monoplane. Hence for this
biplane (above Ci,< 0.2) Cp,/Cp, is less than it
would be if the two wings were actually identical and
thera were mno effective decalage. For negative
staggers experiment and theory

[T TTTrI] [TTT T T 1111 TTITTTrIT . . :

SRR LT A (L agres In substantiating the gen-

.32 LA.CA. Data fr MA.CA. Data f7 7oronto .
’3‘?—-‘%%’f‘é£‘i”k’é’é§5"7 |a'l?{':—f|/.ﬂa"?/q . T Rl 7~ eral conclusion stated above,
Experiment— — — - for the cases investigated, al-
124 Theory \ though the effect is small. For
g"_z N = zero stagger Cp,/Cy, differs very
LB/./G S ] little from unity, and although
A X = the calculated results scem to
k h , confirm the above general con-
/;08 « . - -
FAFTs Clak v CoHimaen 567 0‘1u310n., th? conmderabl? incon:
m, 1 sistencies in the experimental
‘ 11 [T data and the deviations of some

@ a4 08 /20 04 08 L2 0 04 08 |2 [6 . N s
0 ' ' : G ’ ' *® of the individual results from

-5

FioURE 9.—Eflect of alrfofl camber on equel wing biplanes

A'ﬂygﬂl-(), o=+30°, No decalage.

small values of the Reynold’s Number, so that devia-
tions from the potential flow assumed by the theory
might be expected to be larger than at the high Rey-
nold’s Numbers occurring in sactual flight. Further-
more, the calculations give very erratic results unless
the monoplane experimental data are

those predicted by the theory
render it difficult to make any
generalizations in this case.

- Stagger has a very definite effect, increasing stagger
in the positive direction tending to increase Cr,/Cij.
As an example of this effect, theoretical and experi-
mental curves are plotted in Figure 10 for an R. A. F.
15 equal wing biplane with various staggers. At 30%

120 : .
very carefully faired, since small vari- ' lr
ations in Cr,, and (i, are consid- e P =T |
erably magnified in the computation e I+ g=+30% || 7 R
of interference effects. For all of the e = ]
above reasons a very close agreement L2 1
between theory and experiment is &, =
not to be expected. In certain cases &, Experiment = === 4~
considerable discrepancies are found, +08 Theory| | | %&—r L1 ;0 =
but on the whole the agreement is T L 7
surprisingly good. 104 e 4

The general conclusions which may = % ZANY,
be drawn from the results are as pd — i
follows: . ' ~00 5 ] =
The effect of airfoil camber on o Ffo=— =T
Ory/Crp s small but its exact nature  0.96; I UEFECEETT L LI UL L UL L)
has not yet been very satisfactorily : . &y :

determined. There does, however,
appear to be a tendency for increas-
ing camber to increase the amount
by which Cp,/C;, differs from unity.
In order to illustrate this effect, as
well as to indicate the nature of the
agreement between theory and exper-
iment, curves are given in Figure 9 for three equal wing
biplanes which are approximately identical except for
the airfoil sections used. It should be remarked in
connection with these curves that the Clark Y biplane
of the series had a small effective decalage of such a
nature that above iz 0.2 the lower wing had a

F1ourE 10.—Effect of stagger on equal wing biplanes
R. A. F.-15 biplanes A-e,%-:.o.
Experimental data from: N. 4. C. A. T. R. 256
a=430°
o=0°
. 8nd R. & M. 857

o=-+430°

o=—150° -
‘stagger the British and American tests were in such
good agreement that a single curve could be plotted to
represent both. At zero stagger the British results
lie considerably below the American and the theoretical
ones and have not been included in the figure. Figures
9 and 10 illustrate a phenomenon which has been

PR
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observed in practically all of the pertinent cases
investigated. For positive staggers the experimental
values of Cp,/Cyy; fall off rapidly for values of Cfp,
which are large but still well below the normsl burble
point. The theoretical curves do not exhibit such a
behavior. The diserepancy may be a real one or it
may be due to the low Reynold’s Numbers at which
the tests were conducted.

The effect of decalage has been investigated with
reference to the series of biplanes with decalage
mentioned previously. The agreement with experi-
ment, while not exact in every instancs, is reasonably
good, and is very much better than is the case for the
early Betz theory.

Decressing the gap tends o accentuate whatever
interference effects exist, i. e., Cp; is reduced and
C:,/Cr, becomes more different from unity. In the
neighborhood of gap-chord ratio=1, however, the
changes in biplane characteris-

It should be mentioned that, following a eonversa-
tion with Prof. L. Prandtl, the theory was also devel-
oped upon the assumption that the spacing of the
trailing vortices is less than the span of the wing, being
equal to the spacing between the *‘rolled up” vortices
far behind an actual rectangular wing. (Cf. Chapter

XTI, Reference 1.} The formul® so obtained are not
' much more complicated than those given above, but
i the upplication of them to any psrticular. biplane
involves considerably more labor than does the use of
the simpler theory given here. The results appear to
be sligchtly better, but it is felt that the increased
accuracy is noft enough to warrant the increase in
complexity, so that this extension to the theory is not
given here.

It is perhaps interesting to note the effect of the
relative lift distribution on the induced drag of a
biplane cellule without decalage, as calculated from

- . {./2 |~

ties for a small change in gap-

chord ratio are comparatively e

small. This fact furnishes a  4/0 Theri -l

convenient method of deter- =F p‘e?im"'" N

mining the renge of validity of P AR N
A L N

the present theory. For an ¢ e

R. A  F. 15 orthogonal biplane ¢,

\

with gap-chord ratio=0.6 the (o5 =

theory gives values of Cp,/Cy,

which are much too high, while

for the same biplane with Los

staggers of +30° the agree-

ment with experiment, while 02

not good, is quite within reason.

In the former case p— u’ =10.0, 100

while in the latter it is 8.7. g ar o2

It appears from the limited
data now aveilable that the
theory begins to deviate con-
sistently from experience for
p—u’ greater than 7 or 8, the deviations increasing
rapidly as u—p’ rises above this value. This means
that for normal orthogonal biplanes the theory should
be valid for gap-chord ratios above approximately
three-fourths. As the stagger increases either posi-
tively or negatively the permissible gap-chord ratios
may be somewhat reduced. This breakdown of the
theory for small gap-chord ratios was to have been
expected in view of the assumptions made in its
derivation.

As a final example the characteristics of an R. A. F,
15 unequal wing biplane have been caleulated. (%,/Czs
and the geometrical properties-of the cellule are given
in Figure 11. It will be seen that the agreement with
experiment is satisfactory in spite of the small gap, the
reason being that the overhang causes g-u’ to have the
small velue of 5.3.

as o4 o5 ae o7 a.8 o.9 Lo LI

Crp

- FIGURE 11.—R. A, F.-15 unequsl wing biplane

by aq
—m]5, Ay=Am=6.0,—=0.75,
B Ay O,t’ 7

o=-47% No decalage. Experimental data from R. & M. No. 99%.

Prandtl’s well-known formula. The error introduced
by assuming the kfts of the two wings proportional to
their areas instead of taking into account the relative
efficiencies was found to be only 3 per cent in the most
extreme case investigated. This means that for
‘practical performance -calculation it is normally
quite permissible to neglect the effect of relative
efficiency as is usually done by the engineer.

YVII. CONCLUSION

The airfoil theory presented in this paper has been
applied to the biplane problem only. It furnishes,
however, a general method of attacking the problem
of the behavior of an airfoil in & disturbed flow, when-
ever the disturbing velocities at the airfoil are known.
For this reason it should have & fairly extended range

of usefulness. The biplane theory itself is somewhat

| |

|

|

L

I li= J
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h
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cumbersome and the application to particular examples
involves rather tedious computations, but it is difficult
to see at present how a much simpler theory could be
developed for so complex a problem without the intro-
duction of unjustifiable assumptions. The agreement
of the present theary with experiment, as indicated
in the examples which have been. investigated, is in
general satisfactory, although considerable discrepan-
cies have been found in certain cases. For the further
investigation of these discrepancies and in view of the
interest in the question per se, it is felt that it would be
highly desirable to have a systematic series of experi~
ments conducted at considerably larger Reynold’s
Numbers then any which have bheretofore been
employed in this connection.

The author wishes to take this opportunity of ex-
pressing his sincere appreciation of the assistance
rendered by Mr. W. B. Oswald in checking several of
the more lengthy differentiations and all of the numer-
ical calculations involved in plotting the biplane
auxiliary functions.

Daxiel GUGGENHEIM (GRADUATE
ScHOOL OF AERONAUTICS,
Cavrrornia InstrTuTE OF TECHNOLOGY,
PasapeNa, Cavrr., March 15, 1930.
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NOTATION EMPLOYED IN THE FINAL RESULTS OF
THE BIPLANE THEORY

Subseript ( ), implies ‘““upper wing.”
Subseript ( ); implies ‘“lower wing.”
Oy, Op,=lift coefficients of the individual wings in a
biplane
Cu,, Cxy,=moment coefficients of the individual wings
. in a biplane
measured about the center of the airfoil chord
and defined as positive for stalling moments.
+ Opyy=characteristics of the individual wings
when tested separately as monoplanes at the
angle of attack corresponding to Cpjeeveee-
" O
A; A, etc.=various components of the change in
" coefficients in passing from monoplane to bi-
- plane conditions.
b=span.
t=chord.
=geometric gap defined as in Figure 7.
o =geometric stagger defined as in Figure 7.
A =aspect ratio.
a=angle of attack of the biplane cellule defined as in
! Figure 7.
€, - -+ -g¥=guxiliary biplane functions given in
Figures 12-16.
n=efficiency factor; 2mn=slope of the monoplane lift
coefficient curve for infinite aspect ratio.

G
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